H.E.S.S. CollaborationH.E.S.S. Collaboration
  • The collaboration
    • H.E.S.S. Institutions
    • H.E.S.S. Organisation
    • H.E.S.S. Prize
    • H.E.S.S. opportunities
  • Science
    • H.E.S.S. News
    • H.E.S.S. Publications
    • H.E.S.S. data release
    • External Proposals
      • visibility calculator
  • Sources of the month
  • Contact
December 1, 2010 by H.E.S.S. Collaboration
Source of the Month

Very high energy gamma rays from the W49 region

Very high energy gamma rays from the W49 region
December 1, 2010 by H.E.S.S. Collaboration
Source of the Month

December 2010

fig0

A composite Chandra X-ray (blue) and Palomar infrared (red and green) image of the supernova remnant W49B reveals a barrel-shaped nebula (Source: X-ray: NASA/CXC/SSC/J. Keohane et al.; Infrared: Caltech/SSC/J.Rho and T. Jarrett). One interpretation for this shape is that the stellar explosion resulted in jets of gas traveling close to the speed of light, traced by the X-ray emission.


The W49 region hosts two bright radio sources (Fig. 1): the star forming region W49A and the supernova remnant W49B. The million solar mass Giant Molecular Cloud W49A is one of the most luminous giant radio HII regions in our Galaxy and hosts numerous active, high­ mass star formation sites embedded a 50 light year region. The supernova remnant W49B (top image) stands out among remnants of this type due to its high radio surface brightness; it is also one of the brightest ejecta-­dominated remnants in X­-rays. W49B lies at a distance of about 30000 light years (Brogan & Troland 2001), has an estimated age of a few 1000 years and appears at a size of 4 minutes of arc. W49B’s progenitor was a super-massive star located in a dense molecular cloud; the stellar wind of this star drove a wind cavity into the cloud and the explosion occured in this cavity (Keohane et al. 2007). The unusual barrel-shape of the W49B remnant has led Ioka et al. (2004) to suggest that it represents a remmant of a gamma-ray-burst explosion, resulting in two highly-relativistic jets, with the X-ray emission (top image) tracing the jets up to the point where they hit the cloud at the edge of the cavity and cause X-ray emission to flare out. Even without this speculative scenario, which predicts a degree-wide source of hard gamma rays, the relatively young age of the remnant combined with its embedding in a cloud serving as target for gamma-ray production by cosmic rays accelerated in the supernova shock make this a promising target for gamma ray observations, and indeed W49B was observed by H.E.S.S. as early as 2005. The first detection in gamma rays was, however, reported at GeV energies by Fermi (Abdo et al. 2010).

About 60 hours of observations accumulated by H.E.S.S. combined with advanced analysis techniques have now resulted in the detection of W49B as – at the scale of the H.E.S.S. resolution of about 5 minutes of arc – point-like source of TeV gamma rays, with a statistical significance of 8.8 sigma and a flux equivalent to 0.5% of the Crab Nebula flux (Fig. 2). The energy spectrum of gamma rays is rather steep, with a spectral index of about 3 between 0.3 TeV and 10 TeV, and matches smoothly with the lower-energy spectrum by Fermi (Fig. 3). Gamma-ray emission from the direction of W49A is also indicated for the first time, at a significance in excess of 4.4 sigma (Fig. 2). The gamma-ray signal is coincident with the densest part of the molecular cloud.

Since the supernova shock of W49B is observed to be interacting with the molecular cloud in which the supernova exploded, the detection of W49B at GeV and TeV emission is a strong indication for a hadronic nature of the accelerated particles. In case of W49A, shocks created by the strong winds of numerous massive stars provide a plausible mechanism for particle acceleration. Recently, evidence for the presence of two expanding shells in W49A with an energy in the 10^49 erg range was found by Peng et al. (2010), providing an appropriate source of energy.

Reference: H.E.S.S. collaboration, F. Brun et al., poster at the 25th Texas Symposium on Relativistic Astrophysics, Heidelberg, 2010.


fig1

Fig. 1: 21 cm radio image of the W49 region, showing the W49B (left) and W49A (right) emission regions (from Brogan & Troland (2001)). Image is in RA-Dec coordinates.

fig2

Fig. 2: H.E.S.S. gamma ray map of the W49 region, showing both W49A (top source region) and W49B (bottom) as distinct sources of very high energy gamma rays. Superimposed white contours show the continuum radio emission, taken from the NRAO VLA Sky Survey (NVSS). CO line radio data (not shown) confirm that the peak emission in WB49A coincides with a compact and dense molecular cloud. Note that this image is in Galactic coordinates, and is hence rotated compared to Fig. 2.

fig3

Fig. 3: GeV and TeV gamma ray spectrum of the W49B remnant obtained by the Fermi ­LAT (green points) and by H.E.S.S. (red “bow tie”).

Previous articleHESS J1943+213: an extreme BL Lac object?Next article The incredible shrinking source HESS J1303-631

Sources of the month

Each month a TeV gamma ray source investigated with the H.E.S.S. telescopes is featured. See also the pages on Astrophysics with H.E.S.S.: The Nonthermal Universe with an overview of the physics and the source types.

More sources

The Vela Pulsar – the most Highly Energetic ClockNovember 1, 2023
HESS J1645−455 – A gem on the ring?October 1, 2023
The identity crisis of the blazar PKS 1510-089August 1, 2023

Categories

  • Source of the Month

Tags

Atmosphere black holes Blazar Galactic Center galactic plane galactic source gamma-rays neutrinos pulsar

Contact

You can contact us for scientific queries and general informations using :
hess-ec@lsw.uni-heidelberg.de

Sources of the month

The Vela Pulsar – the most Highly Energetic ClockNovember 1, 2023
HESS J1645−455 – A gem on the ring?October 1, 2023
The identity crisis of the blazar PKS 1510-089August 1, 2023
H.E.S.S. collaboration official website. Proudly Built By H.E.S.S. members.
(c) 2004-2025 by the H.E.S.S. collaboration

Last sources of the month

The Vela Pulsar – the most Highly Energetic ClockNovember 1, 2023
HESS J1645−455 – A gem on the ring?October 1, 2023
The identity crisis of the blazar PKS 1510-089August 1, 2023

Internal

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
H.E.S.S. Collaboration
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}